Search results for "spin qubits"

showing 2 items of 2 documents

Unveiling the Effect of Magnetic Noise in the Coherence of Single-Molecule Quantum Processors.

2019

Quantum bits (qubits) constitute the most elementary building-blocks of any quantum technology, where information is stored and processed in the form of quantum superpositions between discrete energy levels. In particular, the fabrication of quantum processors is a key long-term goal that will allow us conducting specific tasks much more efficiently than the most powerful classical computers can do. Motivated by recent experiments in which three addressable spin qubits are defined on a potential single-molecule quantum processor, namely the [Gd(H2O)P5W30O110]12− polyoxometalate, we investigate the decohering effect of magnetic noise on the encoded quantum information. Our state-of-the-art m…

Quantum decoherenceDephasingmolecular magnetism02 engineering and technology010402 general chemistry01 natural scienceslcsh:Chemistryquantum algorithmQuantum mechanicspolyoxometalateQuantum informationdecoherenceQuantumscalabilityQuantum computerOriginal ResearchPhysicsmolecular spin qubitsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesQuantum technologyChemistrymolecular nanomagnetlcsh:QD1-999Qubitcoordination chemistryQuantum algorithm0210 nano-technologyFrontiers in chemistry
researchProduct

Binding Sites, Vibrations and Spin-Lattice Relaxation Times in Europium(II)-Based Metallofullerene Spin Qubits.

2021

Abstract To design molecular spin qubits with enhanced quantum coherence, a control of the coupling between the local vibrations and the spin states is crucial, which could be realized in principle by engineering molecular structures via coordination chemistry. To this end, understanding the underlying structural factors that govern the spin relaxation is a central topic. Here, we report the investigation of the spin dynamics in a series of chemically designed europium(II)‐based endohedral metallofullerenes (EMFs). By introducing a unique structural difference, i. e. metal‐cage binding site, while keeping other molecular parameters constant between different complexes, these manifest the ke…

Spin statesFOS: Physical scienceschemistry.chemical_element010402 general chemistry01 natural sciencesMolecular physicsCatalysischemistry.chemical_compoundVery Important PaperPhysics - Chemical PhysicsPhysics::Atomic and Molecular ClustersPhysics - Atomic and Molecular Clustersspin-vibration couplingQuantumeuropiumSpin-½Chemical Physics (physics.chem-ph)Full Paper010405 organic chemistryChemistryNanotecnologiaOrganic ChemistryRelaxation (NMR)Spin–lattice relaxationfullerenesGeneral ChemistryQuímicaFull Papers0104 chemical sciences3. Good healthQubitMetallofullerenemagnetic propertiesAtomic and Molecular Clusters (physics.atm-clus)Europiumspin qubitsChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct